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Quantum mechanics as non-commutative symplectic 
geometry 

Aristophanes Dimakis and Folkert Miiller-Hoissen 
Inslitul [iir Thmretische Physik, Univenitst Gcningen, Gbttingen, Federal Republic of 
Germany 

Received 5 Janualy 1992 

AbrtracL W collstmct consistent differential cliculi on the algebra generated by oper- 
alors satisfying the mnonical mmmulation relation. This leads U, a mathematical frame- 
work in which quantum mechanics a n  be understood as (noncommutative) symplectic 
geometry. M pain1 out the posibility to describe interactions 'geometrically' as defor- 
mations of the differential a l c u l u ~  

1. Introduction 

Recently there has been considerable interest in non-commutative geometry [l] as 
a framework for physical theories [2-51 and as a tool for studying certain structures 
which appear in some physical models [MI. The latter in particular concerns quan- 
tum groups for which non-commutative differential geometry has been developed by 
Woronowicz [9], and Wess and Zumino [lo] (see also [ l l]  and the references cited 
there). The present work is influenced by the latter. We address the question of 
the role which differential calculi on operator algebras could play in physics. We 
demonstrate that the classical notions of symplectic geometry can be transferred to 
the algebra generated by operators satisfying the canonical commutation relations. 
Quantum mechanics can then be described in terms of non-commutative symplectic 
geometry. 

Similar ideas appeared in the work of Dubois-Violette ef al [RI. In contrast to our 
approach they consider the derivations of an algebra as the analogue of the classical 
notion of vector fields and take them as the starting point to develop concepts of 
non-commutative geometry (concentrating on the algebra of complex n x TL matrices). 
Thereby they overtake the rules of the classical differential calculus. 

Also the algebra considered in the present work is consistent with ordinary differ- 
ential calculus. However, the apparent uniqueness of classical calculus of differential 
forms (built on the commutative algebra of functions on a manifold) disappears in 
the non-commutative regime. There are algebras which are only consistent with de- 
formed differential calculi. This opens a variety of general questions some of which 
we discuss in the context of our example. There may he deformation parameters (or 
functions) in a differential calculus which are 'inessential' in the sense that they can 
be transformed away by an automorphism of the algebra. Can we assign a physical 
role to 'essential' deformations? 

OM5-4470~~15625+24107.50 @ 1992 IOP Publishing l l d  5625 
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Section 2 introduces differential calculus on the ‘Heisenberg algebra’ A generated 
by operators satisfying the canonical commutation relation. We confine our consid- 
erations to one pair of conjugate variables. The framework easily extends to the 
general case, but the problem of solving the consistency conditions will become more 
complicated. In section 2 we study this problem for the one-dimensional case. The 
appendix contains the proof of lemma 21 in section 2 The commutation relations 
of the resulting consistent differential calculi are summarized in section 3 and their 
relation with differential calculus on the ‘quantum plane’ [lZ, 10) is discussed. 

Vector fields and flows on A, and an inner product between vector fields and 
differential forms are introduced in sections 4 and 5, respectively. In section 6 we 
use these tools to formulate symplectic geometly and symplectic dynamics on the 
operator algebra. Section 7 contains some conclusions. 

2. Differential calculus on the operator algebra 

In this section we first introduce the Heisenberg algebra A in a form convenient for 
the subsequent calculations. We then recall the notion of a differential calculus on 
an algebra. The rest of this section deals with the problem of determining consistent 
&ffeienii2; @iCUii on A, Our iiiain iesuii n s u m m a i ~ i e ~  iii meorem 2.1 ihe end 
of this section. 

We will restrict our considerations to a one-dimensional system with ‘position’ 
operator q and ‘momentum’ operator p satisfying the canonical commutation relation 

[ q , p ]  = ifill. 0.1) 

In terms of 

<’ = (< l ) t  = p <z = (p)’ = p (2.2) 

this takes the form 

~ ~ ~ < ~ c j  = ifin (2.3) 

where 

Using the permutation operator 

and 

a convenient index-free formulation of (2.1) is 
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Let A denote the @-algebra of polynomials generated by ti and 1. With the 9 we 
formally associate 'differentials' d t i  which generate the space A1(A) of I-forms as 
an A-bimodule. We also set d l  = 0. 

A differential calculus 191 on A is a prescription A of how to multiply I-forms 
(and then also r-forms) together with a (C-linear) 'exterior derivative' operator d 
such thatt 

d2 = O  (I.*) 
d(w A w') = (dw) A U' + (-1)'w A dw' 

( ~ A w ' ) ~  = ( - l ) P P ' ~ ' t h ~ t  

(df ) t  = d(f') 

(2.9) 

(2.10) 

(211) 

where w and w' are r- and r'-forms, respectively, and f E A. 

of the form 
We will assume commutation relations between algebra elements and differentials 

fdF' = d t k  O ( f ) i  (Vf E A)  (2 12) 

with O( f ) i  E A. This enforces 

(2.13) 

(214) 

'Ib specify a differential calculus means to specify the operator 0 which is therefore 
our central object. The problem is to find all consi.sfenr differential calculi on A. The 
consistency equations which have to be satisfied arise from the following procedures 
(see [9] in the case of quantum groups): 

(Cl) Apply d to the canonical commutation relation (2.3) and use (2.12) to 

(c2) Apply the conjugation + to (2.12). 
(C3) Commute the differentials dt '  through the canonical commutation relation 

(GI) Acting with d on (212) (with ,$j instead of f )  leads to commutation relations 

~ --...... ~ "I, .4:a-..-"...:n," .,. *I.̂ I^F* 
UJI I I I I IULG a11 "LIIGlGlllldl> L" "I= lGLL 

(2.3). 

for the differentials. Commute ti through these relations. 

make the addifional assumplion$ that O ( t ' )  is linear in the [ I ,  i.e. 
we were .!!&!e. tG se!% !!!is prab!em ,in !U!! genera!ity. !n the fcl!!owing WC wi!! 

(2.15) 

t i d t j  = ~ ' j  (k (1 E F '  k 1 (2.16) 

t Here we have chosen Ihe definilion used by Woronowicz 191. (2.10) dwiales from Comes' prescription. 
H e  de6nes (aodol ... da,)t =d(o!,) ... d ( ~ l ) u d  Vai Ed. 
$ This b molivaled by lhe form of equation (2.20). 
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It b convenient to write this in the compact form 

A Dimakir and F Muller-Hoissen 

Cdf = 6 d l (  

where 

6 = OP. (2.18) 

Let us first evaluate the consistency condition (Cl). Acting with d on (23) gives 

c..(dE'E' *J + ti d(j)  = 0 (2.19) 

which together with (2.12) implies 

€ijO(c); + = 0 .  

(1 - P)(1+ 6) = 0 

Using our compact notation, (2.20) with (2.15) becomes 

and therefore 

(1 - P)(1- 0) = 0 .  

(2.20) 

(2.21) 

(2.22) 

This equation expresses the first consistency condition. 
The second consistency condition can be expressed as 

(2.23) 

where the bar denotes complex conjugation. This is seen as follows: 

Pdlt = ( t d l ) '  = ( @ P d ( t ) '  

= @ P P ( d c  = @)5d( = o O P d ( ( .  

Let us now turn to the third consistency condition. In order to formulate it in a 
convenient and compact way we have to introduce some more notation. 0 may be 
viewed as a 2 x 2 matrix where the entries are 2 x 2 matrices themselves: 

(2.24j ~ ~ . ,  ,-;\k .- - r \ i k  w-,.- ,. ,,.i\ ,IC - J( w = (w-.)  J 

(i.e. 0 b a sum of tensor products of two 2 x 2 matrices). We define 

Tr,O = 0: (2.25) 

i e, 

(Tr, 0): = 0;:. (226) 

Using (2.22) and (2.23) the condition (C3) can be expressed as follows. The proof k 
given in the appendix. 
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Lemma 2 1 .  

Re0 = 1 Tr , (Q-  1) = 0 .  

It is now convenient to write 

0 = 1 + i n .  

Then (2.22). (2.23) and (2.27) are converted into 

a = n  
PO = n 
Tr,  n = 0 

n2 = 0. 
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(2.27) 

0 

(228) 

(229) 

(2.30) 

(2.31) 

(2.32) 

These four equations express the consistency conditions (Cl)-(C3) (under the linearity 
assumption imposed on 0). 

An interesting question is how a differential calculus (specified by a matrix 0, 
respectively a) transforms if we perform a transformation of the algebra generators 
p and q which preserves the canonical commutation relation and the Hermiticity. 
Restricting to only linear transformations, the corresponding transformation group is 
SL(2,R) = Sp(2). The following result may then come as no surprise. 

Lemma 2 2 .  (2.29)-(2.32) are invariant under transformations 

n c ( S @  S)R(S-' @ s-1) (233) 

with S E  SL(2,R). 

&ooJ (2.29) and (2.32) are evidently invariant. The invariance of (2.30) k a conse- 
quence of the identity 

(1 - P)S  @ s = 1 - P. 

In order to demonstrate the invariance. of (2.31) we write Cl as 

n = x, @ Y, 
(1 

with 2 x 2 matrices X ,  and Y,. Then 

which vanishes if Tr, = 0. 
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The significance of this result lies in the fact that we may regard differential calculi 
as identical, if they are related by an SL(2,E%)-transformation. This paves the way 
towards the general solution of the above equations for 0. (2.29) and (231) are 
solved if we set 

A D i m a h  and F Milller-Hoissen 

. = ( A  C - A  E )  

with real 2 x 2 matrices A ,  E, C .  (2.32) now leads to 

A B = B A  

AC = C A  

BC = C B  

(2.34) 

(2.35) 

and 

A' + BC = 0 .  (2.36) 

The algebra of real 2 x 2 matrices has at most two-dimensional Abelian subalgebras 
and these are spanned by l(z) (the 2 x 2 unit matrix) and a tracefree matrix T. (2.35) 
then implies 

(2.37) 

with real coefficients f i , p , ~  and c,,,. (2.35) is then satisfied and we are left with 
(2.36) and (2.30). 

Due to lemma 2.2 it is sufficient to solve these equations for representatives from 
each SL(2,R) orbit of trace-free matrices. Besides T = 0 there are three families of 
orbits, representatives of which are considered in the following. The orbit T = 0 k 
included as the Limit c5 - 0. 

(a) Solving (2.30) wth  

.=(! :) 
reduces R to the form 

/ o  0 0 o \  Q = [ L  0 0  :J 
c u - U 0  

and (2.36) is automatically satisfied. 
@) Choosing 

(2.38) 

(2.39) 

T = ( '  0 -1 O )  
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(2.30) leads to 

10 0 2u  o \  

\ o  2v 0 0 1  

and (2.36) is again automatically satisfied. 
(c) The last family of orbits is represented by 

T = (  -1 0 ') 
and (2.30) yields 

P K - K I L  " I  

(2.41) 

(2.42) 

(243) 

Again, (2.36) 6 satisfied. 
The three solutions for R define consistent first-order differential calculi. Further 

restrictions arise from the extension to higherader forms with a consistent A product. 
This is the consistency condition (a) which we have to work out next. 

Acting with the exterior derivative operator on (2.17) yields 

(1 + 6 ) d c h d c  = 0. (244) 

In the following we will often drop the wedge symbol between 1-forms. Using (228) 
the last equation is turned into 

(2.45j . A \  r, 2.- 1. ( i t  P + i i r j r n C a <  = 0 

which together with (2.32) implies 

- t iQ(1  + P ) P d € d (  = 0. 

(1 + R ) d < d (  = 0. 

(246) 

Mded  to the previous equation this ieads io 

(2.47) 

Here we have introduced 

which has the property 

it2 = 1 

(2.48) 

(249) 
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as a consequence of (2.30). An equation of the form A d t  de = 0 is then equivalent 
to A(1-  8) = 0. Using (217) and (2.47) the consistency condition (13) can now be 
formulated ast 

A Dimalds and F Milk-Hoissen 

(2.50) 

Evaluating this equation with (2.39), (2.41) and (2.43). respectively, we find that only 
(2.39) survives with non-zero entries. In the latter case (250) requires U = 0, but 
does not restrict the parameter c E R. 

Let us summarize the results of this section. 

Theorem 21. All consistent differential calculi on the Heisenberg algebra A satisfying 
the linearity condition (2.15) are given modulo SL(2,R) transformations by 

with c E R. 

For this class of differential calculi equation (2.47) becomes 

(1+ P ) d ( d t  = 0 

which means that the wedge product is the classical one. 

0 

(2.51) 

3. Consistent differential calculi and transformations 

In this section we further investigate the class of consistent differential calculi found 
in the previous section. The most important result is that the deformation parameter 
e can be transformed away by an automorphism of the algebra A (see theorem 
3.1). The remainder of this section contains some more technical remarks and briefly 
discusses the relation of our work with differential calculus on the ‘quantum plane’. 

For the class of consistent differential calculi on A which we obtained in the 
previous section, the commutation relations between p and q and their differentials 
are (modulo SL(2, R) transformations) 

(3.1) 

and we have the classical A product 

d q  A d p  = 0 d q  A d p  = -dpA d q  d p h d p  = 0. (3.2) 

t me indices indicate the action on the respective mmponenls of the threefold tensor product 
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Remark. Motivated by corresponding results in the case of quantum groups [9], we 
look for a representation of d in the formt 

d 0  = [p ,0 ]+  (VO E A 1 ( d ) )  (3.4) 

with a 1-form p. The Leibniz rule is then guaranteed. Inserting the ansatz p = 
g d q  + h d p  with g, h E A in (3.3) with f = q and f = p, respectively, we find 

1 
lh 3h P = 7 (( cq3 - p )  dq + P d p )  

for the differential calculus given by (3.1) and (3.2). Furthermore, 

1 
P A P  = dq A dp 

which commutes with all f E A so that 

d z f  = [ P ,  [ P ,  f1-1+ = [ P  A P ,  fl- = 0 

as required for an exterior derivative. 

As a consequence of the commutation relations (3.1) we have 

p n d p =  d p p n + d q c [ f n ( n -  l)fip"-*+inqp"-l] 

d(p")  = d p n p n - ' + d q c [ ~ i n ( n - l ) q p n - ? +  $n(n- l ) (n-2)pn-3] .  

It is sometimes convenient to have (3.1) in the form 

O(q)f = q6: 

O(p):  = p6: +icq6,k6;. 

@(I)! = 6: 

'bgether with (2.13) this implies 

O(f) i  = 0 (Vf E A )  

(since f is a function of p and q )  and then also 

O( f); = O( f); = f. 

The only complicated term is @(f): which for f = C fmnqmpn turns out to be 

~ ( f ) :  = c C  fmnqmn[$/i(n - 1) y"-?+ iqpn-l]. (3.12) 

According to our next result, the deformation of the differential calculus can be 
transformed away by a nonlinear transformation. 

t Here, I,]- means mmmulntor nnd [ , I +  nnlicommuInlor. 
- 
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lheorem 3.1. The transformation 
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(3.13) 

leaves the canonical commutation relation invariant, preserves Hermiticity, and trans- 
forms the differential calculus to the ordinary one. 

prwf. The transformation obviously preserves Hermiticity and the canonical com- 
mutation relation. A simple calculation shows that in terms of q' and p' we have 

0 (3.1) with c = 0. 

The transformation A - A given by (3.13) can also be described as 

f - U - ' f U  ( f e d )  (3.14) 

with 

U = e x p  I -  t *'& q4) 
(3.15) 

and is therefore invertible. 
It is sometimes convenient to regard h as a parameter. The value h = 0 then 

corresponds to classical mechanics where p and q are represented as functions on a 
phase space. Although in the derivation of the differential calculus (3.1) and (3.2) we 
relied heavily on the assumption h # 0, the differential calculus remains consistent 
in the limit h + 0. The deformation parameter c survives this classical limit. But 
in contrast to the non-commutative case there is no way to transform it away by a 
Change of the (commutative) coordinates p and q. Whereas different values of the 
parameter c distinguish different calculi in the classical situation (h = 0), we may 
regard them as equivalent in the non-commutative case (h + O)! 

So far we have ignored problems arising from the fact that we are dealing with 
an algebra of unbounded operators. Our formal manipulations do make sense if 

dense invariant domain (e.g. the Schwartz space S(R)). Adjoint operators are then 
always understood to be restricted to this domain and one has to make sure that they 
also leave the common domain invariant. Indeed, the algebra generated by p and 
q satisfying canonical commutation relations is an example of an ()*-algebra which 
b a *-algebra A of linear operators defined on a common dense linear subspace of 

The usual way to circumvent (or rather to hide) the problems with the unbound- 

.._ --"+A". .La 
wl*c ,U,,'*, ,,,r u p 1 a L u 1 J  p an6 q ;in t.,e Sch:6dioge: rep:esens:io:,) :e B ssitnb!e 

g i g e n  sprp ..hi& 3 $...v&ari&afit ufidcr -4 [!3]. 

edness of the operators p and q is to consider only the bounded operators 

~ ( s )  = e'"q y( t )  = ei*p. (3.16) 

A formalt calculation using (2.1) leads to 

z(s)y(t )  = e-'"'y(t)z(s). (3.17) 

t (3.17) and (2.1) are not equivalent. In panicular, (3.17) admits finile-dimensional represcnMtions in 
mntmst 10 (2.1) [l4]. 
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In principle we could have started with this equation and considered differential 
calculus on the algebra of bounded operators generated by z(s) and y(t). It is more 
difficult then, however, to reveal the symplectic structure of quantum mechanics in 
the sense of section 6. f i r  fixed values of t and s, the Weyl relations (3.17) can 
be viewed as the commutation relations of a 'quantum plane' 112, lo]. We have 
SL(2,W) as the group of linear transformations leaving the canonical commutation 
relation invariant. Similarly, we may ask for linear transformations leaving the Weyl 

allow noncommuting operators instead of numbers as entries of the transformation 
matrix. This leads to the 'quantum group' GL,(2) with r = exp(-ihst). 

There is a consistent differential calculus on the quantum plane z y  = r o y z  with 
the following commutation relations between I, y and their differentials: 

*-, "e:,... :".",.:"-.+ ," d.:" -"" ... ̂ I.^_.^ --- .-:..:*, -..-.. .--- "c- --^. :--- --n.. :E 
IGIaUvII  U110.1mlll. 111 ULW U 3 G  WG I l d Y S .  I I U I I - L I I V l d l  S U L I I  U d l l s L U l l l l ~ L l U r W  UNY U WG 

x d z = r ; d z x  

z d y  = T,, d y  z + (7: - 1) d z  y 

y d z  = I-,, d z  y 

y d y = r i d y y  

(see. [KI!)~ @!e might expect that this i$ the 'exponentiated for" of a diff$rentia! 
calculus on the algebra A generated by p and q. Then z(s) and y ( t )  would play 
the role of z and y, respectively, and we have to replace ro by r = e x p ( - i h s t ) .  
However, the first and the last commutation relations above are inconsistent with I- 
depending on s and t. 

Rather, the standard differential calculus on A leads to 

x d z  = d z z  

x d y  = r d y x  

y d x  = r-l dz y 

v d y  = d y y  

dropping the dependence on the parameters s and t .  More complicated commutation 
relations are obtained via automorphisms of A (like (3.13)). 

4. Vector fields and Rows 

in ciassicai mechanics the dynamics of a system is described by a vector fieia on its 
phase space. Such a vector field can be regarded as a derivation on the commutative 
algebra of (smooth) functions of the phase space. In order to generalize the notion 
of a vector field to non-commutative algebras, one possibility is to define the latter as 
a derivation of the algebra. This is the point of view taken in [3]. In the framework 
of non-commutative geometly which we use in this work (and which is also used in 

field (see (4.1)). According to that definition, a vector field, in general, does not 
have the derivation property. On the other hand, derivations play an important role 
in quantum mechanics. In order to clarify the relation between non-commutative 
geometly and quantum mechanics we will discuss these facts in this section. 

the iiieiriji of qiraniuin giiiupjj there k aiiothei iiioie iiiitiiia! def;fii:iafi of 2 it?c:oi 
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We define vector fields associated with the 'coordinates' E' by [9, lO]t 

df  = d('aif V f  E A. (4.1) 

The h ibniz  rule together with (2.16) then implies 

ajCi = 6; + a,. 
For the consistent differential calculus given by (3.1) and (3.2) this leads to the 
following commutation relations between vector fields and algebra elements: 

aqq = 1 t sa, 
a,p = pa, t icqa, 

a,q = Pa, 
app = it pa,. 

Using dZ = 0, equation (4.1) implies 

dE'd(1a.a. = 0. 1 :  

(4.3) 

(4.4) 

lbgether with (3.2) this leads to the vector field commutation relation 

ia,,a,i = o (4.5) 

which turns out to be consistent with (4.3). This means that commuting p or q from 
ieit to right through (4.5j does not yieid additionai restrictions on the ciifferentiai 
calculus. Whereas 8, satisfies the (ordinary) derivation rule 

Lemma 4.Z. A vector field X = X ' ( q , p ) a ,  t X2(q,p)a, is a derivation if and 
only if it is a linear combination (with complex coefficients) of the two vector fields 
a, and 

Roof, If X is a derivation, applying it to simple monomials in q and p and using 
(4.3) reduces it down to a linear combination of the two vector fields V, and a,. 
That these vector fields are indeed derivations is most easily seen if we use theorem 

0 3.1, since V, = a,,. 
t Occasionally we write a,, instend of 8;. 
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Next we would like to generalize the classical notion of the Row of a vector field 
to our framework A natural definition appears to be the following. The Row of a 
vector field X is a family of Linear mappings q, : A - A, differentiable with respect 
to the real parameter 1, such that 

(4.9) 

and 'po = id (the identity mapping on A). I is some interval containing 0. The 
'integral cuwe' of X with initial data f E A is then q , f .  In order to solve the 
Row equation one has to choose a basis of A and, using the Linearity of X and ' p t ,  
understand it as an infinite-dimensional matrix equation. 

Remark. In order to clarify what we mean by differentiability of a Row we need a 
topology on the algebra A. An algebra of bounded operators is a Banach space and 
we have a natural topology induced by the operator norm, the uniform topology. For 
algebras of unbounded operators there is no natural choice of a topology. A topology 
on such algebras which can be considered as a generalization of the uniform topology 
has been introduced and investigated in 1151, see also 113, 161. This can be used to 
make sense of the left-hand side of (4.9). We are left with the question under which 
conditions on X does the Row exist, is unique and has the (semi-) group property 

In (4.9) we should look at the vector field X as a linear operator on the algebra 
A. In [17] one finds theflow ofa linear operator on a Banach space with dense domain 
2, defined as a collection of (linear) bijective maps 'p, : 'P -+ P, differentiable with 
respect to t, satisfying 

(a..'pl = 'ps+t. 

(4.10) 

and the semi-group property (see also [18]). These conditions imply 

'prx = xipt (4.1 1) 

and therefore our Row equation (4.9). 0 

In quantum mechanics, time evolution is an automorphism of the operator algebra. 
It is natural to think that this automorphism could be described as the Row of some 
vector field. However, this does not work because of the following reason. It is easily 
verified that q, is a family of endomorphisms of A, i.e. 

(4.12) 

if and only if the generating vector field X is a derivation. But lemma 4.1 tells 
that there are too few vector fields which are derivations. We may also ask for flows 
which preserve the Hermiticity of Hermitian initial data. We call a Row 'strongly 
Hermitian't if 

(4.13) 

t In  the lanpsge of *algebras this is called an rhomomorphism 
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For the generating vector field this means that 
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( X f ) '  = X ( f ' )  (Vf E A ) .  (4.14) 

Equation (4.1) which defines the vector fields ai implies 

df  = (df t ) '  = (ajf ')td(j = d('@((ajf')')i (4.15) 

and therefore 

aif = o((ajf')')j. (4.16) 

Using (3.10) and (3.11) the last equation implies 

(4.17) 

(apf)' = a,(f'). (4.18) 

Hence, a, is strongly Hermitian. aq is strongly Hermitian if and only if the parameter 
e vanishes, Some more analysis reveals that the only strongly Hermitian vector fields 
are real linear combinations of the two vector fields in lemma 4.1. Time evolution in 
quantum mechanics preserves Hermiticity. Again, these results teach us that it is not 
possible to describe time evolution as the flow of a vector field. 

Nevertheless, there is a way to recover quantum mechanics in our geometrical 
framework and there is a sufficiently large class of vector fields which we may still 
think of as generators of time evolution, but necessarily in a weaker sense as at- 
tempted above. With a vector field X we associate a family of endontorphisnts of A 
defined by 

(4.19) d .  d .  
-vtq = +. , (Xq)  z v t p  = + , , ( X P )  Q0 = id. dl  

!!! order for the endomorphism ei nf a!! 'evo!uti0!! vector fie!@ .x to describe 
quantum mechanical time evolution, it has to preserve the canonical commutation 
relations, i.e. 

[ q ( t ) , p ( t ) l  := [ + . , s , + , p l  = [ q , ~ l  = i f in  (4.20) 

as well as the Hermiticity of p and q.  In terms of the vector field X ,  these conditions 
read 

[ X q ,  VI = [ X P ,  SI (4.21) 

and 

( X q ) ?  = ,yq ( j ipj!  = j i p  (4.223 

respectively, 

[ X ' , p ]  = [XZ,q]  (XI ) '  = X'  (X*) '  = sz (4.23) 
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if we express X as X = X’B, + X’a,. 

only for p and q, 

field X a derivation X (which is not a vector field, in general) such that 

We will call a vector field X ‘Hermitian’ if it satisfies (4.22), i.e. we require (4.14) 

As an intermediate step towards (4.19) we could have associated with each vector 

x q = x q  x p = x p .  (4.24) 

The derivation X then generates et which will be a (semi-) group of endomorphisms 
of A, under suitable technical conditions. 

5. Inner product of vector fields and differential forms 

In classical differential geometry one has an inner product 1 between vector fields 
and differential forms. In particular, it is needed in classical mechanics to associate a 
‘Hamiltonian vector field’ with a function on phase space. The aim of this section is 
to generalize the inner product to the non-commutative algebra A. 

In the previous section we have introduced vector fields 8; by (4.1). Wth f = <J 

this equation implies 

4 = ai<] = a i A d p  (5.1) 

where the last equality defines an inner product between vector fields and I-forms. 
If p = d c i p i  and X = Xjaj, then 

X J p  = xi p i .  (5.2) 

We extend the inner product to higher order differential forms via the operator 
equation 

a i l d [ J  = 6; - d<‘Q$!.a,J (5.3) 

where Qif  E A. For Qi. = 6{6: we recover the classical rule. Q has to satisfy 
certain consistency conditions. These arise by acting with J on differential form 
expressions which have to vanish identically. First we must have 

O i J [ ( l + P ) d < d < ] = O  (5.4) 

as a consequence of the commutation relations (2.51) which the differentials have to 
obey. This amounts to 

(1 + p ) ( Q  - 1) = 0 (5.5) 

and therefore 

/ 1  0 0 o \  
Q 1-(3 -6 

Q = I - a  B 1 + 6  
\ O  0 O i )  
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with a, p, y, 6 E A. (5.4) can now be written as 

A DimakiE and F MUUer-Hoissen 

0,Jdq = 1 - d q a &  + ( d q a  + d p 6 )  apJ 
a,Jdp= - [ d q a + d p ( l + 6 ) ] a q J  

a,Jdq= [ -dq( l -p)+dpr]apJ 

0,Jdp = 1 - ( d q P  + dpy)a ,J  - dpa ,J .  

(5.7) 

As a further consistency condition we have 

aiJ(dtL d t f  d t m )  = 0 (5.8) 

since triple products of differential forms vanish identically as a consequence of the 
commutation relations (2.51). respectively (3.2). lbgether with (5.4) this means 

6! dCf dCm - d("Qif dCm + d tnQk!  nt d('Q:y = 0. (5.9) 

In the following we will assume the entries of Q to be complex numbers (instead of 
more general elements of A). The last equation then becomes 

(1 - 61, + 623612)(1 - P23) = 0 (5.10) 

= opj and imposes the 

a y  = P6 (5.11) 

between them. 

require 
As a further condition to narrow down the freedom in the inner product, we may 

d<'(aiJp) = r p  (5.12) 

for any r-form p, a familiar formula in classical differential calculust. This means 

( l - Q ) ( l - P ) = O  (5.13) 

and therefore 

6 = 0. (5.14) 

t me equation (4.1) which defines the vector fields ai can nlso he wnllen in lhe form d f =de'  8,Ad f. 
(5.12) generalis this formula to r-forms. 
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6. Noneommutative symplectic geometry 

Classical mechanics deals with the commutative algebra of functions on a phase space. 
The structure of classical mechanics is most elegantly described in terms of symplectic 
geometry. Quantum mechanics works with the non-commutative Heisenberg algebra 
A. After the preparations in the previous sections we can now address the ques- 
tion whether quantum mechanics can be understood as non-commutative symplectic 
geometry. 

The analogue of the canonical symplectic form of classical mechanics ist 

w = dpA d q .  (6.9 

w is hermitiant, i.e. wt  = w. We call a transformation ‘p of p and q ‘canonical’ if it 
ieaves w invariant, i.e. 

d d p )  A d d q )  = dp A dq. (6.2) 

A vector field X is called ‘canonical’ if the associated endomorphism dl of A (see 
section 4) is canonical. We then have the following result. 

Lemma 41. A vector field X is canonical 8 

Oq(Xq) + qxP) = 0. (6.3) 

An evolution vector field X is canonical iff 

where q(l)  = eIq and p ( l )  = $ , p .  This vanishes iff$ 

d p ( t ) A d q ( t ) =  d p A d q  

which is the statement that 8, is canonical. aP is a derivation and we can express it 
as a commutator: 

t Because of the facl that the differentials of 1’ and y sllidy the uwaI anticonimutation rule there is no 
operator ordering ambiguity here. 
t I f  we use Connes’ mnventions for t, w is antiHermitian: ut = d ( y l ) d ( j ~ t )  = dg h d j ~  = --W. 

5 Here m w u m e  that (4.19) has a unique mlution. 
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If X is an evolution Vector field, then 
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IXq,pl = [Xp,ql = -ifta,(Xp). 

This shows that (6.3) and (6.4) are equivalent for an evolution vector field. 0 

The SL(2,W) transformations used in section 2 to classify differential calculi and 
also the nonlinear transformation (3.13) which ‘undeforms’ our class of consistent 
differential calculi are ‘canonical’ transformations. This suggests that it is sufficient 
to formulate symplectic geometry with the undeformed differential calculus, i.e. (3.1) 
with c = 0 (see, however, the discussion at the end of this section). In this case an 
evolution vector field is automatically canonical (since 0, is then a derivation and 
(6.4) becomes an identity). 

With f E A we associate a vector field X ,  via 

X t J w  = -d f (6.5) 

copying the classical definition of Hamiltonian vector fields. Writing 

x, = xfa, + x;a, 
d f  = fi dq + fi d~ 

and using 

a*JW = - a d q - ( 1 + 6 ) d p  

a,Jw = ( 1  - P ) d q - r d p  

(6.5) becomes 

In order to be able to assign a vector field to any f 4 we have require that 

(6.11) 

(6.12) 

which is always satisfied if we accept the additional condition (5.12). (6.12) allows us 
to invert (6.10): 

(6.13) 
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Then, in particular, 

1 
Xq = c[i[yaq - ( 1  + 6 )  a,,] 

1 
X p  = &l -@)a, + aapl. 

firthermore, for the Hamiltonian 
1 

2 m  H = -  PZ + V(P)  

we have 
1 
m d H  = V ' ( q ) d q +  - p d p  

and therefore 

l a  
vv'(q) + 2.3 a, + ?; [ , p -  (1 + ~ ) v ( ~ ) I  ap.  

~ 
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(6.14) 

(6.15) 

(6.16) 

(6.17) 

(6.18) 

X H  snouid determine dynamics. it therefore snouid be a canonicai evoiution vector 
field (for a sufficiently large class of potentials). This means that X ,  has to satisfy 
(4.23) which requires a = 0 = = 6 = 0 (if we assume (5.12), othewise a real (5' 
or a real 6 would survive). We then have the laws of the classical differential calculus. 
The endomorphism @* generated by X ,  is now determined hy 

which are the Heisenberg equations of motion of quantum mechanics if we represent 
p and q by operators on some Hilbert space. 

The suppiementary conditions which we had to impose on the non-commutative 
symplectic geometry in order to recover the equations of motion of quantum mechan- 
ics amount to the requirement that the derivation ,qH associated with the Hamilto- 
nian vector field X ,  is given by 

1 1 2, = - n d ( H )  := - ( H , . ] .  
f i  A (6.21) 

The above results were obtained hy using the possibility undeforming the differen- 
tial calculus by canonical transformations. But such a transformation acts non-trivially 
on a Hamiltonian. In particular, this shows that dynamics can be shifted from the 
Hamiltonian to the differential calculus and vice versa! Physics can therefore be de- 
scribed in different ways. One extreme is the point of view taken above where the 
differential calculus is undeformed. Another extreme is to choose the free Hamil- 
tonian (i.e. only the kinetic energy) and represent the interaction as a deformation 
of the differential calculust. The latter point of view can be regarded as a kind of 
geometrization of interaction. Again, we have to stress that all this only works if f i  
(regarded as a parameter) does not vanish. 

t In this ease one hns to find a suitable formula to nplace {6.S). 
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7. Concluslons 

In classical geometry we are already used to dealing with a non-commutative algebra, 
namely the algebra of differential forms. Physically we may think of it as a mathe- 
matical formulation of our classical conception of how to measure volumes. In thii 
sense the Standard‘ differential calculus is distinguished among the many possible 
consistent differential calculi which exist on a commutative algebra, in particular on 
the algebra of functions on a phase space. So far there seems to be no argument why 
one should consider a ‘deformed‘ differential calculus in classical physics. 

A ‘quantum group’ k a (special kind of) non-commutative Hopf algebra. A 
differential calculus on a matrix quantum group (e.g. a deformation of SU(2)) allows 
one to define a ‘quantum Lie algebra’, i.e. generators of the matrix quantum group [9]. 
In general, standard differential calculus is not consistent with the algebra structure. 
In this case one is forced to choose a ‘deformed‘ calculus. The non-commutativity of 
the algebra severely constrains the possibilities of consistent differential calculi. 

The algebra A generated by operators y and q satisfying the canonical commu- 
tation relation is consistent with ordinaly differential calculus, but also allows certain 
deformations. Only with a certain linearity assumption (see (2.15)) we were able 
to solve the consistency conditions completely. It then turned out that the allowed 
deformations could be transformed away by linear (SL(2,Iw)) transformations and a 
nonlinear transformation of y and q.  These transformations preserve the canonical 
commutation relation and Hermiticity. This result has no counterpart in the case of 
a commutative algebra A. On the other hand, it shows that our linearity assumption 
should be relaxed because nonlinear transformations of p and q will map a linear 0 
into a nonlinear one. This raises the question as to whether a nonline: 0 can be 
transformed into a linear one by such a transformation (which preserves the canonical 
commutation relation and the Hermiticity of p and q) .  We do not h o w  the answer 
yet. 

The fact that we were able to transform all the differential calculi which we 
found to the standard one made it easy to take definitions from classical symplectic 
geometly to the non-commutative geometly. This concerns in particular the definition 
of Hamiltonian vector fields. If there are deformations of the differential calculus, 
we have (additional) operator ordering ambiguities here and (6.5) is no longer the 
correct formula. Some more work is needed to clarify what the correct generalization 
is. In particular, this is important for developing the idea to represent interactions 
‘geometrically’ as deformations of the differential calculus. 

We have discussed in which sense the Heisenberg picture of quantum mechanics 
can be understood as (non-commutative) symplectic geometry. The correspondence 
is not perfect since quantum mechanical time evolution of some observable f(p, q )  
does not correspond to the action on f of the flow qt generated by a Hamiltonian 
vector field. It is rather given by +rf = f (Gry,  + , q )  where $bt is an endomorphism 
of the operator algebra, associated with the vector field. 

Our restriction to a single pair of ‘position’ and ‘momentum’ operators is not es- 
sential. The problem to find the most general consistent differential c31cuIus increases, 
however, with the complexity of the algebra. 

A D i m a h  and F Milller-Hoissen 
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Appendix. Proof of lemma 2.1 

We will need the following two lemmata. 

Lemma A.1. 

A f t  = 0 9 A = 0 (if h # 0). 

prwf. 

0 = ACE = t [ A ( l +  P )  + A ( l -  P)]Ef 

= i [ A ( l +  P)CE+iAAe]. 

Ebr h # 0 this implies A = 0. 

If X and Y are 2 x 2 matrices, we define (cf section 2) 

Tr , (X  @ Y )  = (Tr X ) Y .  

Tr, has the following properties. 

Lemma A.2. 

T r , ( P ( X  @ Y ) )  = X . Y Tr,((X @ Y ) P )  = Y ,  X .  (A.3) 

proof. 

T r , ( P ( X @ Y ) ) j = ( P ( X @ Y ) ) k j  = P ) ~ X ~ q " ' = X ~ q k .  

The second formula can be checked in the same way. 0 

With these preparations we now proceed to the proof of the asserted formulae. Using 
the Yang-Baxter equationt 

p12p23p12 = p23p12p23 ('4.4) 

we find 

( 1 - P ) 1 2 P Z 3 P 1 2 d ~ E ~ =  p23pL2(1- P ) Z 3 d c F F  

= eijFiFjP23PlzdEe 

= E i j E i E J f d E  

= (1 - P)I?E < C i E  

= (1- P),,6, ,~), ,CIFEE. 

= ( 1 -  P)126)23Fdc< 

t ?his aeu on a threefold tensor prcdua and lhe indica refer lo lhe rapeclive mmponenls. 



and thus 

( 1  - P)12(e23'13 - 1) = 0. 

0 = (1  - P)12(023 - G13) 

Wlth (2.23) the last equation can be converted into 

= (l - p)12('23 - p12G23p12) 

= (l - p)12(023 + G23p12) 

and therefore 

gives 

0 = C[(1 - P )  @ 1][1c9 x, @ 1'"][(1 + P )  L% 11. 
L1 

We may choose the matrices Y, to be linearly independent. Then 

o =  (1- P ) ( l @ X , ) ( l +  P )  

= 1 @ x, + (1 @ X , ) P  - P( 1 e3 X , )  - x, c9 1. 
Acting with Tr, on this equation and using lemma A2 yields 

X ,  = L(TrX,)l 2 

so that 

0 + 6 = +(TrX,)l@ Y,. 
L1 

Now we apply P - 1 from the left and P from the right. Using (2.22) we find 

Z(1- P ) = c i ( T r S , ) ( P  - l ) ( l@Ya)P  
D 

= t(Tr X,)[1@ Y, - (1 @ Y,)P] 
0 
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Evaluation of thii equation with Tr, yields 

2 . 1 ~  $ c ( T r X , ) Y ,  
LI 

and leads to 

@ +  G = 2.1. 

From (AS) we also have 

(1 - f ? , ~  (e23 - e23)(1 - P),? = 0 

and, using ( k 6 ) ,  

(1 - P ) , , ( @  - 1)23(1 - qt2 = 0. 

Inserting the decomposition 

0 - 1 = z, @ y. 
D 

we find 

1@z,+z,@1-P(1@z2,)-(1~zz,)P=o. 

Application of Tr, yields 

Tr Z, = 0 

and thus 

Tr,(@ - 1) = 0. 

(A.6) and (A.7) are the asserted formulae. 
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